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Abstract: Increasing demands for innovative products and rising competition 

lead manufacturing companies to design more flexible and efficient production 

environments. Thus, factory work becomes increasingly knowledge intensive. 

Recent developments of digital technologies including social software, mobile 

technologies and augmented reality offer promising opportunities to empower 

knowledge workers, but lead also to sociotechnical challenges. We explore 

opportunities and challenges and show that they are applicable for a wide range 

of production strategies and manufacturing companies. Our study suggests 

genres of technologies to support knowledge work for tomorrow’s flexible 

production. It also extends the knowledge related to current trends and emerging 

technologies in advanced manufacturing environments to empower workers and 

to improve job satisfaction, efficiency and productivity. 
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1. Introduction and motivation 

The social environment for manufacturing has changed considerably in recent years. 

Growing global market competition and the diversity of customer demands have led to a 

rapid development of manufacturing (Tao et al., 2015). In order to respond to the demand 

for new, high quality and highly customizable products, manufacturing companies are in 

need of production systems that quickly adapt to product variations (Orio et al., 2015). 

Advanced manufacturing systems have promoted both information and process integration 

in companies and helped companies to transform from mass production to mass 

customization (Tao et al., 2015). In line with these developments, the skills, flexibility and 

efficiency of shop floor workers are a decisive factor in order to ensure product 

specifications, meet deadlines and keep the machines running (Yew et al., 2016). 

Moreover, human capabilities such as learning, creativity and problem solving are unique 

and hard to transfer to machines that for example cannot deal with the rising degree of 

product individualisation. To keep up with the radical change as outlined above, 

manufacturing companies have to ensure that shop floor workers utilize their capabilities 

in the best possible way to achieve smart and sustainable production environments.  

In the last decade, an increasing amount of novel digital technologies have shown their 

potential to empower human workers. For instance, social platforms enable individuals to 

become producers, allowing anyone to easily acquire, create, share and modify content in 

an intuitive way. Malleability, simplicity and user-centricity have even been mentioned as 

important design principles of these platforms (Trier & Richter, 2013; Richter & Riemer 

2013). Hand-in-hand with the advent of social platforms goes the pervasion of mobile 

devices including smart tablets, smart glasses, and smart watches, which allow consuming 

information even more easily (Frohberg et al., 2009). Moreover, Augmented Reality and 

Virtual Reality technologies are experiencing a renaissance, as respective technological 

frameworks have been acquired by big players including Apple and Google, who are 

integrating them into their mobile operating systems for mobile devices.  

We continue this study, by describing current trends in manufacturing and production 

systems (Section 2). Next, we describe how digital technologies can empower shop floor 

workers to better perform in knowledge-intensive tasks, and identify four key dimensions, 

which we term sociotechnical industrial challenges (Section 3). Section 4 includes a 

discussion of our results and closes the paper with a conclusion and an outlook. 

Ultimately, we want to contribute to exploring the potential of recent digital 

technologies for empowering human workers in knowledge-intensive production systems, 

and to answering the following research question: “Which sociotechnical challenges frame 

the implementation of novel digital technologies in knowledge-intensive production 

environments?” 

  



 

2. The role of knowledge in production 

The role of knowledge in production has evolved over the last century and technological 

breakthroughs have changed it radically several times. At the beginning of the century the 

goods were predominantly manufactured in craft production (focus on humans, high skill 

demands), later a transition to automated mass production occurred (focus on machines, 

low skill requirements), and currently we face individualized production which has a strong 

focus on both humans and machines accompanied with high knowledge demands (Koren, 

2010). 

 

2.1 Drivers towards knowledge-intensive production 

 

Customer demands, changes in markets and society as well as regulatory changes drive the 

transition towards knowledge intensive production. New, high quality and highly 

customized products are important competitive factors in today’s markets and are radically 

changing the development of production systems (Orio et al., 2015). As one example, 

Predictive Manufacturing enriches machines and systems with advanced monitoring, data 

processing and modelling capabilities and aims at systematically processing production 

data into information that enables workers to make informed decisions on the basis of 

predicting or preventing events and optimizing processes (Lee et al., 2013). Next, 

Sustainable Manufacturing is the capability to use natural resources for manufacturing by 

creating products and solutions that are able to fulfil economic, environmental and social 

objectives, and in the same time to preserve the environment and to improve the quality of 

human life (Garetti & Taisch, 2012). It is an answer to shrinking, non-renewable resources, 

tighter regulations for environment and occupational safety and health, and increasing 

customer preferences for environmentally-friendly products (Jayal et al., 2010).  

Further, fully automatized production without a human involvement is not an option 

anymore. Global future trends ask for human-centred production environments (cf. 

UNIDO 2013). The content of the production work is changing from routine tasks that are 

well-documented and performed alone towards more situation-dependent innovative 

problem-solving done in collaboration with other workers (Lampela et al., 2015). Brettel 

et al. (2014) argue that human work will change in content in the near future but will still 

remain irreplaceable, especially in view of customization resulting in an increasing need 

for coordination. Further, workers on the shop floor need to be intensively skilled in 

decision making as the separation of dispositive and executive work diminishes. Self-

controlling systems communicate via internet and via humans, which modifies the role of 

shop floor workers towards coordinators and problem-solvers in case of unforeseen events 
(Brettel et al., 2014).  

Manufacturing has further faced far reaching changes in the environment, such as 

increasing salaries, talent shortages, the wide range of new innovations and technologies, 

and the changes in governments’ policies to support domestic manufacturing (McKinsey, 

2012). These changing factors did spark the development of many production models and 

manufacturing systems during the last decades. Figure 1 shows this evolutionary process 

in relation to the development of the competitive factors (cost, quality, time, flexibility, 

environment, service and knowledge).  
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Figure 1: The development of production models and manufacturing systems 

 

The increasing complexity of products and the importance of product- and production-

related knowledge have led to the introduction of knowledge work tools at all levels of 

manufacturing organizations (Lampela et al., 2015). Therefore, according to Armbruster et 

al. (2007), production workers are becoming knowledge workers, and expectations are 

becoming more demanding regarding to their skills. The underlying idea of smart factories 

highlights the importance of information and knowledge processes and the efficient and 

effective utilization of knowledge on all levels of operations (Hessmann 2013), including 

production workers at the shop floor. This will have significant effects on the job content 

of production workers, e.g. introducing information and knowledge processing, decision-

making and problem solving. Advanced manufacturing organizations have good 

possibilities to develop solutions that support worker-centric knowledge management in 

their production environments, utilizing the versatile technological possibilities available 

(Lampela et al., 2015). 

Responding to all these changes, the manufacturing industry is paying increased 

attention to the agile, networked, service-oriented, green, and social manufacturing 

characteristics (Tao et al., 2015). Manufacturers need to take into account the current trends 

and emerging digital technologies to become more competitive and to improve their 

efficiency and productivity.  

Summing up, human workers play an important role in todays and tomorrows 

manufacturing environments, as they are able to complement modern technology and 

perform knowledge-intensive work tasks more effectively compared to pure technical 

approaches. However, this also calls for increased knowledge management skills for the 

workers and the production environments. 



 

2.2 Knowledge requirements in different production models 

 

Strategic choices and decisions made on products, services and production guide strongly 

what kind of production models and related methods a manufacturing company is applying. 

In different industries there are different needs, e.g. an order-based, a product-variety-based 

or a volume-based production model, which typically determine the chosen method of 

production. In general, production models are classified into the following categories: 

 Project-based production: low volume products with high variety and complexity 

 Job production: one-off products for a specific customer usually done once or 

with low quantities 

 Batch production: Products are manufactured in groups or batches, not in a 

continuous stream, single production line can be used to manufacture several 

types of products 

 Flow production / just-in-time production (JIT): Products are manufactured in 

several stages, where items move continuously through the production lines (high 

volume of similar products/items). 

 Continuous / mass production: Flow and mass production are used often in 

parallel (high volume products of low variety) 

 

In addition, the strategic choices of production models are highly determined by the 

level of customization in a manufacturing company. The degree of customer alignment is 

determined by the customer coupling point and the amount of customer-oriented 

information (Forza et al., 2007). For instance, if the customer is involved already in the 

early phases of the business process (from design, manufacturing, assembly, to 

distribution), more customer connection and information are required. In pure 

customization, the most intensive customer alignment is accomplished by the Engineer-to-

Order (ETO) strategy, which is suitable for unique products that have similar 

characteristics, and the production is initiated when receiving a customer order and 

developing technical specifications accordingly (Silventoinen et al., 2014). Other types of 

customization strategies include e.g. Assemble-to-Order (ATO), Manufacture-to-Order 

(MTO), and Make-to-Stock (MTS) which resembles mass production. 

These different production strategies have naturally different requirements on the 

worker’s knowledge level. However, in today’s complex manufacturing environments it is 

not anymore the case that the knowledge requirements decrease with the level of 

automatization. Rather the topics of knowledge shift from purely crafts knowledge with no 

automatization towards knowledge about the technical aspects of the machines in fully 

automated systems. This corresponds to the shift in the worker’s responsibility from 

producing goods towards keeping technical systems in a production environment within 

defined conditions of operation. Figure 2 shows this correlation. Additionally, optimization 

targets further increase the level of knowledge requirements. Ideally production finds an 

optimal balance between efficiency, quality and cost (cf. Atkinson, 1999). 
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Figure 2: Knowledge demands for different manufacturing strategies 

 

Lean production, which focuses on the creation of customer value through the 

elimination of production waste, has built a worldwide reputation related to production 

improvement and cost reduction in several companies (Lacerda et al., 2015). Lean 

production has been used more frequently in discrete manufacturing, i.e. in the automotive 

industry, than in the process sector (Abdulmalek and Rajgopal, 2007). However, lean 

methods have spread their scope from the automotive industry to a wide range of industries 

and services (Lacerda et al., 2015).  

Six-sigma is a management method that aims to reduce process variance and hence to 

reduce errors applying advanced statistics and process knowledge into project management 

(Kwak and Anbari, 2006). The name originates from the goal of reaching a defect rate of 

less than 3.4 defective parts per million (99.99966% or 6-sigma quintile). Its core steps of 

performing, define, measure, analyse, improve and control (op.cit.) are all inherently 

knowledge intensive and require profound skills. Newer methods like lean-six-sigma 

combine the two approaches into a “culture of continuous improvement” (Pepper and 

Spedding, 2010, p. 146) giving the employees “true ownership” on the processes (Pepper 

and Spedding, 2010).  

As we demonstrated in this section, strong drivers are affecting the role of knowledge 

in production. The demands on knowledge levels and associated skills still rise with the 

current trends in manufacturing, across all forms of production strategies and management 

methods. Increased pressure on competitive factors such as efficiency, quality and cost 

further spark the application of evermore demanding management approaches increasing 

the worker’s responsibility on more and more aspects of production. 

3. Sociotechnical challenges of knowledge intensive production systems 

We expect demands on knowledge management to continue rising in the future as we have 

described in the last sections. In order to cope with these demands, companies will face 

strong challenges in the future. We will explore in this section how socio-technological 

advancements can be utilized to address knowledge management facets.  

These knowledge management facets fall into different categories. While for example 

predictive manufacturing focusses stronger on the technological aspects of knowledge 

aspiration, human-centred production rather focusses on the social aspects. The following 

figure shows four different quadrants of knowledge processes in manufacturing settings. 

 



 

 
 

Figure 3: Four facets of knowledge processes 

 

Towards answering our proposed research question, we will now describe socio-

technical industrial challenges for knowledge-intensive production environments that 

match these introduced four knowledge processing quadrants. The challenges contribute to 

a better understanding of complex interactions between workers, machines, and the work 

environment in sociotechnical production environments (see. e.g. Emery and Trist, 1960), 

and should outline the potential of digital technologies to impact workers in a production 

system.  Based on technological advancements we argue that all four quadrants could profit 

from IT support. Therefore, we have identified sociotechnical challenges, guiding through 

the process of exploring smart factory solutions. Each of these challenges is capable of 

supporting a facet of the knowledge management process, i.e. knowledge transfer, 

discovery, acquisition, and sharing. For instance, self-learning manufacturing workplaces 

support discovering knowledge from manufacturing process data, which is relevant to 

workers for improved decision-making. Figure 4 shows how these challenges are mapped 

into the quadrants of the knowledge processes.   

 

 

3.1 Digitally augmented human work 

 

The challenge of augmenting human work with digital technologies is created in 

contributing and effectively consuming information that is constantly more complex, 

combined from multiple sources and types, and is constantly changing. At the same time, 

workers are dealing with traditional demands of the production environment, such as two-

handed operation. Supporting human workers with digitally augmented tools means to 

provide them with an immediate and personalized provision of information at the shop-

floor-level, which can be configured according to their needs, roles and preferences.  
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Figure 4: Sociotechnical challenges in knowledge-intensive production environments 

 

 

The most common technology term used in this context, augmented reality (AR), is 

defined by Nee et al. (2012) as human-computer interaction that encompasses computer-

generated information on the real world environment. By ‘superimposing information into 

the real world’ (Chi et al. 2013) we expect AR and related technologies, to provide workers 

with illuminating information that helps to solve critical problems in simulating, assisting 

and improving manufacturing processes before they are carried out. This ensures that 

activities, e.g. design or machining, are done right at the first time without the need for re-

work and modifications (Nee et al., 2012). AR can be combined with human abilities to 

provide efficient and complementary tools to assist manufacturing tasks. The 

manufacturing applications of AR can cover assembly, maintenance, product design, 

layout planning, robotics, and machining (Yew, et al., 2016). However, AR in design and 

manufacturing is a relatively new application compared to some of the entertainment 

applications, and this is mostly due to the accuracy required in tracking and registration in 

such applications, and a good alignment with traditional practices (Nee, et. al. 2012.)  

Currently, workers rely primarily on paper checklists generated from MES/ERP 

systems, in order to receive exact job descriptions or orders. As a result, work may 

paradoxically suffer from information overload or lack of pertinent information. Context-

relevant information displayed in the line of sight without media breaks, and seamless 

interaction across different IT tools becomes crucial for smooth operation and avoidance 

of cognitive overload. Yew et al. (2016) have introduced a manufacturing system that 

replaces all paper-based and computer-based tasks with AR tasks that are performed 

naturally by the workers in their physical environment. In this system, the objects that 

workers interact with are implemented as smart objects using their own graphical user 

interfaces (GUIs) augmented onto the workers’ perception of their work environment. 

Further, the elements of GUI can be directly managed by hand, and they are used to 

represent critical real-time information specific to the objects and the task at hand to the 

worker. Workers can view and interact with the GUI through viewing devices, such as 

tablets or wearable computers. The objects (e.g. CNC machines or CAD designs) in the 



 

system can be physical or virtual and interact with each other to provide computer-aided 

technologies to the workers. 

Better access to information and also analytics allow cutting production times while 

increasing product quality and reducing waste due to making better-informed decisions and 

detecting patterns and trends in product deviations. For the worker, being able to benefit 

fully from information generated by machines and previous decisions reduces frustration 

and helps to retain a productive flow of work. 

3.2 Worker-centric knowledge sharing 

Despite wide-spread acknowledgment of the importance of knowledge sharing of shop-

floor workers, knowledge management research has not paid much attention to it so far 

(Nakano et al., 2013). In this context, the following specific requirements of shop floor 

work are an important hurdle for the adoption of digital technologies to facilitate effective 

sharing of manufacturing knowledge: 

 Interaction with knowledge sharing tools on the shop floor needs to be very simple 

and intuitive (e.g. touch or gesture interaction instead of typing text), taking also 

extreme conditions in production environments into account (e.g., extreme heat or 

noise). 

 Hardware components have to be much more robust (e.g. “rugged devices”) and safety 

needs to be guaranteed throughout the whole production process.  

 Information security and trade secret protection as well as the workers' privacy must 

be guaranteed. 

 Usability, user experience and technology acceptance by workers on the shop floor 

need to be taken into account. 

 

Moreover, the challenge is not only to equip workers with appropriate tools, but also 

to develop relating working models for utilizing these tools. Overcoming the challenges 

related to active knowledge sharing holds a great potential for the improvement of 

manufacturing work and worker satisfaction. It can empower workers to share their 

contributions openly in a communally updated pool of knowledge. Full utilization of 

worker-generated content and peer sharing about best practices, problem solving and ideas 

fuels organizational learning and even worker-driven innovation. This can remove 

productivity bottlenecks and improve the pace and depth of on-the-job learning, while the 

worker feels more valued, more socially connected to the work community and better 

motivated – all adding to work satisfaction.  

In the last decade, many organizations have started to use Web-2.0-tools ‘behind the 

firewall’ to support knowledge transfer, sharing, and collaboration, what was perceived as 

new ways of supporting employees (Koch and Richter, 2009, Richter et al., 2013). Most 

notably, social software facilitates user participation in creating content and allows for new 

ways of connecting, interacting and communicating with other people on the Web. For the 

people involved, this did not come without challenges – mostly related to the integration 

of organizational structures and processes. These go beyond the requirements of Web 

platforms, which are primarily characterized by informal structures and have to be taken 

into account in sociotechnical tool design (Herzog & Richter, 2016; Pei & Grace, 2009). 
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Amongst others, researchers and practitioners have been continuously debating the impact 

of the adoption process on the success of social software (Richter et al., 2013; Richter et 

al., 2016).  

The greater awareness and willingness of users to participate in a system that formalizes 

and shares knowledge opens a lot of new possibilities - also in the industrial sector. The 

greater inclusion of workers in decisions that could be taken at job floor level has the 

advantage to motivate people and create a better working environment (Richter & Wagner, 

2014). 

Current production information systems do not support social interaction among team 

members. To stimulate interaction across teams, departments or production sites, new 

modes of using technology will be required. While so-called Social Software has been 

investigated in its potential to facilitate office work, there are still no convincing scientific 

case studies where social media is reported to assist manufacturing collaboration in a 

production facility.  

3.3 Self-learning manufacturing workplaces 

 

Manufacturing companies are especially sensitive to production disruptions and sudden 

production changes, due to the multiplicity of demands that they are required to comply to. 

Responsiveness and resilience to production changes need to be improved while 

maintaining or improving efficiency, work safety and satisfaction. This is possible by a 

process of continuous intelligent and self-learning optimization relying on timely 

product/resources/process data and diagnostics tools. Active monitoring and responding to 

problems with the utilized machinery and devices can keep production predictable, safe 

and efficient. Collecting and interpreting data patterns in the manufacturing process make 

it possible to identify where in the manufacturing process and its services problems and 

bottlenecks arise, and how they can be most effectively addressed, as well as assess the 

time that the repair and maintenance process will take. 

Self-learning manufacturing workplaces are established through linking heterogeneous 

information sources from the worker’s environment and beyond, extracting patterns of 

successful and unsuccessful production from them, and transferring the result as decision-

relevant knowledge to the worker. A self-learning workplace seeks to optimize Overall 

Equipment Effectiveness (OEE) by following three key performance areas: availability, 

quality and performance. However, the manufacturing knowledge and information is 

currently scattered across a plethora of information silos without a centralized platform to 

connect, combine, analyse and organize the information according to the present needs of 

the shop-floor worker. Mastering the complexity of manufacturing data and information 

through the linking of data and information sources and documents requires sophisticated 

semantic and data mining technologies to discover the relationships between different 

sources of manufacturing data (Zhong et al., 2015), allowing intelligent search and 

exploration. A high level of transparency needs to be maintained to make it possible to 

evaluate the manufacturing process and find patterns that determine the quality of the 

process and product from the massive amount of production data generated and analysed. 

A learning cycle needs to be implemented on the system level to address the known 

problem scenarios by combining them to successful solutions pre-emptively.  

Predictive Data Mining (PDM) combines modern data mining techniques with modern 

time series analysis techniques (e.g. Kantardzic, 2011). PDM is based on learning to predict 



 

new events on the basis of historical data. Learning is the process of analysing and 

iteratively processing the data, what can be characterized as a "trial and error" process. In 

other words, the forecasts are generated by the learning system based on exhaustive 

investigation of historical data. PDM will deal with pre-processing, data quality estimation, 

feature selection, prediction, and forecasting. Pre-processing should include transformation 

of available data into formats better suited for further processing in the forecasting and 

analysis system.  

According to Orio et al. (2015), the key assumption is that integrating context 

awareness and data mining techniques with traditional and control solutions will reduce 

maintenance problems, production line downtimes and operational costs of manufacturing 

while guaranteeing a more efficient management of resources in manufacturing 

environment. For example PDM in maintenance work, according to Selcuk (2016), 

primarily involves foreseeing breakdown of the system to be maintained by detecting early 

signs of failure in order to make the maintenance work more proactive. Selcuk covers the 

latest techniques and their application areas of predictive maintenance, such as 

performance monitoring, vibration analysis, oil analysis, thermographic analysis, and 

acoustic analysis. The study also outlines some important points that should be considered 

for successful predictive maintenance implementation. In addition, the study reports the 

latest developments and future trends in predictive maintenance, such as E-maintenance, 

remote maintenance and management systems, tele-maintenance, IoT, and RFID. 

With the implementation of advanced IT solutions, IoT -technologies and sufficient 

knowledge management procedures, new possibilities for leveraging the manufacturing 

knowledge arise. One such concrete advance is the creation of a self-learning 

manufacturing workplace. Utilizing detailed and consistent data from manufacturing 

operations, enterprises are able to implement e.g. predictive maintenance and machine-

assisted decision making for calibrations that allow reducing unplanned process disruptions 

and maintaining a smooth workflow.  

3.4 In-situ mobile learning for factory workers  

 

The increasingly needed flexibility of workers leads them to perform a wider range of tasks 

and share more responsibilities in production. This causes the pervasive need of overall on-

the-job knowledge, available at the right time in the right place. Furthermore, knowledge 

is subject to continuous change as work practices evolve and requirements change. So far, 

declarative and often abstract generic knowledge is acquired “off-the-job” to qualify 

learners for production work, and it appears that this gap can be bridged by mobile learning 

in the right context. Various terms are applicable for mobile learning, such as mLearning, 

in-situ learning, and mobile workplace-based learning (Frohberg et al., 2009). In the field 

of work-based education and workplace learning, mobile technologies, such as smart 

phones, tablets and most recently, digital data glasses are gathering considerable interest, 

as they can provide learning content in an intuitive way to the worker. However, there is 

surprisingly little systematic knowledge available about how such mobile devices can be 

used effectively for learning and competence development in the workplace. Some 

empirical studies (Pachler et al., 2011; Pimmer et al., 2010) show the limitations of existing 

mobile learning concepts and stress the “learning in the right context” by mobile devices. 

Wigley (2013) reports the key challenges and benefits of mobile learning in a case study 

at Jaguar Land Rover, and gives considerations for any business going mobile.  
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While the mechanisms of situated learning have been researched before (e.g. Lave, 

1991), solid research work about how to support mobile or in-situ learning in production 

does not exist, and the main challenge in advancing the state-of-the-art is to evaluate 

effective measures of in-situ mobile learning on the shop-floor. From the pedagogical 

perspective, learner-centred creation and sharing of multimedia content is promising, as 

context-specific, multimodal and multilingual materials can be used as refreshers (e.g. 

maintenance instructions, safety regulations) or as instructions for new workers and 

trainees. Additionally, mobile phone-based decision-making and problem-solving support 

promotes learning and sense-making to decrease learners' uncertainty and increase their 

self-confidence. Another form of mobile just-in-time learning are scenarios involving 

augmented reality. However, while developments, such as digital data glasses appear to be 

promising, very little is known about how this technology can be harnessed for work-based 

training so far. Congruent findings report that the use of a social network site interacts with 

psychological well-being and helps in maintaining relations when people move throughout 

offline communities (Ellison et al., 2007).  

Workers need context-aware learning in real-life situations ("in-situ“, pervasive 

learning) for continued education and training. The establishment of pervasive learning 

environments has to be based on a successful combination and re-configuration of inter-

connected sets of learning objects, databases, data-streams, visualization devices, and 

relevant HCI concepts. Peer-generated content will be crucial to sharing best practices and 

implicit knowledge in specific tasks. Since in-situ learning is new to production 

environments, the challenge includes finding the optimal way to utilize contextual and real-

time machine-generated data, and to design and deliver the learning service so that it is 

effective, efficient and widely accepted. 

Modern working environments impose increasing demands on the flexibility and skills 

of workers. High-skilled manufacturing work implies continuous lifelong learning on part 

of the operators and especially so in manufacturing complex, high-quality products and 

components. Continuous competence development requires context-aware learning in real-

life situations backed by access to relevant, up-to-date information and tacit knowledge. 

Furthermore, such capabilities need to be provided through a mobile interface compliant 

with the demands of factory work in order not to disturb production.  

4. Conclusion and Outlook 

In current production environments, increasing knowledge-intensiveness, decision making 

skills, and social interaction among team members on the shop-floor is a major topic, which 

is not yet supported by digital technologies. To stimulate interaction across workers, teams 

or production sites, new modes of using digital technologies will be required. There are 

still no scientific case studies of social media reported to assist manufacturing collaboration 

in the production facility. The transformation of digital technologies to knowledge-

intensive production environments is expected to be one of the advancements in human-

centric manufacturing for companies to improve their efficiency and productivity in order 

to survive in the competitive markets.  

Overcoming the sociotechnical challenges in the context of the implementation of 

digital technologies in knowledge-intensive production environments holds a great 

potential for the improvement of manufacturing work and worker satisfaction. In addition 

of bringing new sociotechnical means and digital technologies to the shop floor, it is 



 

important for manufacturing organizations to understand what motivates workers for 

knowledge sharing and learning and what prevent them doing so (Paroutis and Saleh, 

2009). New innovative digital technologies along with all the associated new work 

practices and organization of work would empower workers to openly share their 

contributions to a communally updated pool of knowledge. Full utilization of worker 

generated content and peer sharing about best practices, problem solving and ideas 

stimulates organizational learning and even worker-driven innovations.  

As theoretical contributions, this study extends the knowledge related to the current 

trends in advanced manufacturing environments, such as knowledge-intensive production, 

predictive, sustainable and human-centred manufacturing. Companies need to encounter 

the current trends and emerging technologies in manufacturing in order to empower 

knowledge workers, to improve their efficiency and productivity for becoming more 

competitive. 

The four sociotechnical challenges for knowledge-intensive production environments 

presented in this paper are an answer to our proposed research question and provide 

suggestions for developing innovative smart factory solutions to empower workers with 

digital technologies for flexible production. The outcomes of our paper enhance the 

understanding of the prevailing sociotechnical challenges in knowledge-intensive 

production environments such as worker-centric information and knowledge management, 

self-learning manufacturing workplaces, the utilization of augmented reality technologies, 

and in-situ mobile learning in the production. Each of these challenges is capable of 

supporting one specific facet of the knowledge management process, knowledge transfer, 

discovery, acquisition, and sharing. 
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