

Project Deliverable 5.1

www.facts4workers.eu Worker-Centric Workplaces in Smart Factories

Blueprint architecture and integration plan

Series: Heading

Published by: FACTS4WORKERS: Worker-Centric Workplaces in Smart Factories.

FoF 2014/636778

Volume 1: Blueprint architecture and integration report – Deliverable 5.1 –

Project Report FACTS4WORKERS: Worker-Centric Workplaces in Smart

Factories

 Reference / Citation

 Gerhard, Detlef; Dumss, Stefan; Rosenberger, Patrick (2016): Deliverable 5.1: Blueprint Ar-

chitecture and Integration Plan. Project FACTS4WORKERS: Work-Centric Workplaces in

Smart Factories.

www.facts4workers.eu

1. Printing, July 2016

Layout and Setting: Florian Ott, Cooperation Systems Center Munich

Worker-Centric Workplaces in Smart Factories

E-Mail: facts4workers@v2c2.at

Internet: www.facts4workers.eu

This document is published under a Creative Commons Attribution Non Commercial No Derives

licence. You are free to copy and redistribute the material in any medium or format. You must give

appropriate credit, provide a link to the license, and indicate if changes were made. You may do

so in any reasonable manner, but not in any way that suggests the licensor endorses you or your

use. You may not use the material for commercial purposes. If you remix, transform, or build upon

the material, you may not distribute the modified material.

http://creativecommons.org/licenses/by-nc-nd/4.0/

 About this document

 I

Executive Summary

This deliverable 5.1 “Blueprint architecture and integration plan” is a result of the

project “FACTS4WORKERS – Worker-Centric Workplaces in Smart Factories” of the

European Union’s Horizon 2020 research and innovation programme under the grant

agreement No. 636778.

The deliverable reflects on the architectural cornerstones of the FACTS4WORKERS

solution in terms of main hardware and software technologies. Furthermore, the de-

liverable shows the approach the project FACTS4WORKERS has taken to develop, de-

ploy, integrate, and test the worker centric software solution. It starts with the de-

scription of the integration plan on a generic level and points out the necessary steps

to transfer the individually developed and tested services to an integrated functioning

system. Following the agile software engineering approach of the project, integration

steps will be performed iteratively improving the solution step by step and increase

its maturity continuously. This concept also allows to rapidly integrate feedback from

users enabling the worker centric approach. Chapter 3 of the deliverable provides an

overview over the deployment and testing phase. Here, the different maturity levels

prior to release are summarized. This concept allows to introduce the FACTS4WORK-

ERS solution in several steps and constantly gather feedback from the workers. The

final chapter provides an overview over the hardware and software architecture of

the FACTS4WORKERS solution. Required hardware technology for deploying the so-

lution on the shop floor as well as used software technologies, frameworks and pro-

gramming languages are outlined. The deliverable finishes with the description of the

tool Docker, which serves as enabler for the concept of building blocks.

About this document

 Document authors and reviewers

Document authors and reviewers

The following persons have made a direct contribution to the document. Please note

that many others have also supported our work and we thank them all sincerely.

Lead Authors

Name Organisation Role

Detlef Gerhard VUT / TU Wien WP5 – Leader

Stefan Dumss VUT / TU Wien WP5

Patrick Rosenberger VUT / TU Wien WP5

Featuring Authors

Name Organisation Role

Alexander Porsch VUT / TU Wien WP5

Lucas Bezzi VUT / TU Wien WP5

Alessio Caiazza UFI WP3

Reviewers

Name Organisation Role

Martin Wifling VIF WP8 – Lead, Project Coordinator

Gianni Campatelli UFI WP3 – Leader

Joachim Van Herwegen IMI WP4

Francisco J. Lacueva ITA WP6

 Table of Contents

IV

Table of Contents

Executive Summary .. I

Document authors and reviewers .. III

Table of Contents .. IV

Table of Figures ... VI

Index of Abbreviations .. VII

1 INTRODUCTION ... 9

2 INTEGRATION PLAN .. 11

2.1 Integration process .. 11

2.2 Roles and Responsibilities ... 13

2.3 General guidelines for implementation and integration 15

3 DEPLOYMENT AND TESTING .. 17

3.1 Deployment ... 17

3.2 Testing ... 20

3.2.1 Code testing .. 20

3.2.2 Usability and requirements fulfillment testing 21

4 GENERIC HARDWARE AND SOFTWARE ARCHITECTURE 23

4.1 Generic hardware technology overview ... 23

4.1.1 Devices .. 24

4.1.2 Servers .. 25

4.2 Used software technology overview .. 26

4.2.1 Communication and routing .. 27

4.2.2 Front-end ... 30

4.2.3 Back-end .. 31

4.3 Semantic workflow engine .. 35

4.3.1 Introduction ... 35

4.3.2 Strength of the Semantic Workflow Engine within the Project 35

4.3.3 FACTS4WORKERS example for the semantic workflow engine 35

 Table of Contents

4.4 Docker .. 37

4.4.1 Introduction ..37

4.4.2 Containers versus VMs ...38

4.4.3 Strength of Docker within the Project ..40

REFERENCES ... 44

 Table of Figures

VI

Table of Figures

Figure 1: Schematic view on microservices .. 10

Figure 2: FACTS4WORKERS integration process ... 12

Figure 3: General guidelines .. 16

Figure 4: Deployment steps and TRL .. 19

Figure 5: Example of possible connections ... 23

Figure 6: Architectural overview .. 26

Figure 7: HTTP status codes .. 28

Figure 8: JSON objects [JSON, 2016] ... 29

Figure 9: JSON arrays [JSON, 2016] ... 29

Figure 10: SWE schema ... 36

Figure 11: Structure virtual machines [Docker, 2016] ... 39

Figure 12: Structure of Docker containers [Docker, 2016] 39

Figure 13: VMs versus Docker Containers .. 40

 Index of Abbreviations

Index of Abbreviations

API Application

Programming Interface

App Application

AWS Amazon Web Services

BB Building Block

CSS Cascading Style Sheets

Dx.x Deliverable x.x

(x ... placeholder)

GUI Graphical User

Interface

HMI Human Machine

Interface

HSDPA High Speed Downlink

Packet Access

HTML Hypertext Markup

Language

HTTP Hypertext Transfer

Protocol

IP Industrial Partner

IT Information

Technology

JDBC Java Database

Connectivity

JSON JavaScript Object

Notation

Lib Library

LTE Long Term Evolution

OS Operating System

REST Representational State

Transfer

SME Small and medium-

sized Enterprises

SQL Structured Query

Language

TRL Technology Readiness

Level

UMTS Universal Mobile

Telecommunications

System

URI Uniform Resource

Identifier

VM Virtual Machine

WiFi Synonym for Wireless

Local Area Network

WP Work Package

 Project Deliverable 5.1

1 Introduction

With respect to development, deployment, integration, and test, the objective was to

take the following considerations for the worker centric software solution into ac-

count:

 The software should be developed using a modular concept to enable reuse of

building blocks in different use-cases and to ensure expandability.

 The front-end should be developed as web application, enabling access by differ-

ent devices (e.g. desktop computers, tablets, smartphones, etc.) according to the

situational needs.

 Building blocks should be developed with the programming language and frame-

work best fitting to the requested demands. This leads to the usage of different

programming languages within the software, a circumstance that has to be dealt

with while designing the blueprint architecture.

 It should be easy for developers, who are not participating in this project, to im-

prove and further develop the solution, after the project if finished.

 Parts of the solution developed within the project should be published under an

open source license. If required, other license models are permitted, but should

be reduced to a minimum.

To achieve the stated objectives, the project follows an agile software development

approach based on the concept of microservices. “Microservices are small, autonomous

services that work together” [Newman, 2015] to achieve the requested functionalities.

The FACTS4WORKERS solution consists of several microservices called “building

blocks” (BB) within the project. Each of the BB covers a specific task. For detailed in-

formation about BB please refer to D3.1. As BB are developed independently and get

composed to a functioning system during the deployment, they can be extended or

replaced with less effort compared to monolithic systems. Particularly, each BB can

be deployed as an isolated service. This concept allows the usage of different pro-

gramming languages for each BB and prevents that others get affected if one BB fails.

This documents provides a generic view on the integration and deployment process

of the FACTS4WORKERS solution. The described processes and operations state a

general model that can be applied on the use-case specific implementation plans.

These use-case specific considerations will part of the deliverable D5.2.

 Introduction

 10

1

Offset

calculation

REST

API

Webserver
REST

API

Reasoner
REST

API

Multimedia
REST

API

Chat
REST

API

Database

Proxy
REST

API

Figure 1: Schematic view on microservices

Structure of the document

Chapter 2 starts with the integration plan. First, the process steps needed for the in-

tegration are explained. Then, responsible persons and their tasks are identified. Fi-

nally, general guidelines for implementation and integration are introduced to ensure

the same direction of development.

Chapter 3 gives an overview over the deployment and testing phase, pointing out the

different deployment steps and the maturity levels the FACTS4WORKERS solution

has to reach prior to release. Furthermore, activities for testing functionalities and

user experience are described providing a detailed insight into the integration pro-

cess of the project.

Chapter 4 explains the hardware and software architecture, starting with a generic

overview over the hardware requirements for deploying the FACTS4WORKER solu-

tion on the shop floor level. Afterwards, the used software technologies, programming

languages and frameworks are summarized. Furthermore, the Semantic Workflow

Engine gets described, showing its functionalities and routing procedures used for the

FACTS4WORKERS solution, that allows the capsulation of the software and the oper-

ating system deployment. The chapter ends with a description of the deployment tool

Docker that enables the usage of different programming languages without having

major dependency issues.

 Integration process

2.1

2 Integration Plan

This chapter aims to provide a generic overview on the necessary steps in order to

transfer the individually developed and tested services to an integrated functioning

system. Following the agile approach of the project, integration steps will be per-

formed iteratively, improving the solution step by step and increasing its maturity.

This concept allows to rapidly introduce feedback from users enabling the worker

centric approach.

2.1 Integration process

The following figure shows the integration process on a generic level. The integration

process is based on the requirements gathered directly from the workers within the

different use cases. For further information about collected requirements from a

worker-centric perspective, please refer to D1.1, D1.2 and D1.3. In addition, company

specific requirements on organizational, IT, and management level also have to be

taken in account. These include among others in particular safety and security stand-

ards as well as software and hardware restrictions.

 Integration Plan

 12

2

Worker

requirements

Company specific

requirements

Define Building

Block

F4W guideline

Define API and BB

description

Development &

internal testing

Update API

documetation

Distribute BB

Test and validate BB

on IP side

Success?

Completed BB

yes

no

Coordinate

definitions with the

other developers

Figure 2: FACTS4WORKERS integration process

 Roles and Responsibilities

2.2

In a first step, services are defined upon collected user requirements and in alignment

with company specific requirements representing the boundaries stated by manage-

ment and IT departments. For the definition of services, use cases are split up into

building blocks following the microservices concept with a clear input and output.

This allows to divide the software development activities between the different de-

velopment partners.

Under consideration of the integration guideline of chapter 2.3, building blocks and

APIs are described in detail. This helps to determine BBs that can be implemented in

different use cases. Then, based on the specification, development and testing activi-

ties are split up between the developing partners.

Subsequently, the different building blocks are developed and tested in compliance

with the procedures stated in chapter 3.2. If a BB needs to be changed or more im-

proved, this is done in coordination with the other developers. Afterwards, the BB and

API documentation gets updated regarding possible changes to ensure that all part-

ners have at all times a clear overview over the development activities. After devel-

opment, BB are distributed to the deploying industrial partners (IP) in order to be

integrated into the already existing solution portfolio.

BB are developed and integrated continuously, enriching the software functionalities

incrementally. For aligning their functionalities, an extensive documentation is

shared among the developers and the use case leaders. The API documentation is a

key part of the documentation. Collecting feedback from the user after each rollout

allows the continuous comparison between the delivered software and the worker

needs. Doing so, deviations can instantly be identified reducing the risks of wasted

resources and time.

Regular developer meetings on a two weeks’ basis allow the exchange of information

and the establishment of a common ground for the further developments. Addition-

ally, mock-ups and demonstrators are reviewed and discussed in order to provide

feedback among the developing partners. This procedure enables the creation of BBs

that satisfy the needs of all use cases and ensures reusability of building blocks. Reg-

ularly meetings for discussing issues regarding the use cases on a two weeks’ basis

allow the exchange of company specific information and the alignment of the devel-

opment activities with the worker needs.

2.2 Roles and Responsibilities

As setting up clear responsibilities is a key factor for the successful integration of an

individually developed and tested system, several roles are introduced within the

project:

 Integration Plan

 14

2

Use Case Leader

Use case leaders have the overall responsibility for management and coordination of

the whole use case. This includes in particular the interaction between software de-

velopers, deployment responsible persons, and industry partners.

 Define the needed building blocks and their priority.

 Coordinate activities for the use case and manage communication.

 Report progress to the other project partners.

Industry partner

Industry partners (IP) are responsible for providing the necessary link to hard- and

software infrastructure on company side. Particularly, IT departments of IP have to

be involved in order to define interfaces and responsibilities for the deployment of

developed FACTS4WORKERS solutions. The following tasks are within the responsi-

bility of the IPs:

 Provide an API to existing systems or an interface, which have to be integrated the

FACTS4WORKERS solution.

 Provide the hardware components required to run server, client and network

communication.

 Deploy and test the software and provide developers with feedback.

 Provide necessary content and cannot be accesses over an existing IT-system

Implementation and deployment work is separated into three different roles, which

work under main responsibility of use case leaders:

Back-end developer

Back-end developers are responsible for implementing the required core functional-

ities of the FACTS4WORKERS solution. Based on requirements identified within WP

1, corresponding building blocks are developed according to the BB concept. As the

software consists of several BB that communicate over APIs, they are developed indi-

vidually and get integrated after their release. Releases do not have to be final but a

stable version, which can be tested in the company environment for gathering feed-

back and enable further improvement.

All BB are built as so-called Docker containers (see chapter 4.3) capturing a particular

service. The following tasks represent the main responsibilities of the backend devel-

opers:

 Define the API based on the requirements and implement the service.

 General guidelines for implementation and integration

2.3

 Include already existing modules or commercial solutions if available.

 Coordinate with other developers regarding the reusability of the building blocks.

 Build Docker containers that are ready for testing and deployment.

Front-end developer

Front-end developers are responsible for implementing the required user interfaces

of the FACTS4WORKERS solution. Based on requirements identified within WP 1 and

generated mock-ups or demonstrators, corresponding GUI are implemented and

linked to the respective building blocks. The following tasks represent the main re-

sponsibilities of the frontend developers:

 Create GUI layout for different devices based on the requirements.

 Include already existing modules or commercial solutions if available.

 Build Docker container that are ready for testing and deployment.

System integrator

System integrators are in charge of deployment and integration of the developed so-

lutions at the partner sites in cooperation with nominated persons of the industry

partners. Integration also includes the identification of missing building blocks if they

are identified during the integration process. The following tasks are within the re-

sponsibility of the system integrators.

 Develop connectors to the existing IT systems of the IPs if required.

 Install the connectors linking to the FACTS4WORKERS solution to existing IT in-

frastructure.

 Deploy the Docker containers and set up a reverse proxy at the industry partners.

2.3 General guidelines for implementation and

integration

Since the microservices are designed as BB, which interact with each other, standards

are needed in order to ensure full functionality:

 Each back-end BB is developed independent from the others and capsulated in a

Docker container.

 The front-end BB is hosted on a web server Docker container.

 Front-end and the back-end services primarily communicate over REST APIs

(RESTful HTTP requests using JSON).

 Integration Plan

 16

2

 For smart devices such as glasses, a WebSocket is used since this provides ad-

vantages compared to HTTP real-time applications. The corresponding web

server has to have an API for other container.

 The API for each BB is documented with his exposed methods (GET, POST, PUT,

etc.).

 For authentication with the server, each BB uses OAuth2.0.

 In case of static workflows, the communication is handled by a reverse proxy. In

case of dynamic or complex workflows the reverse proxy is supported by the se-

mantic workflow engine.

 For the communication with the existing IT infrastructure (e.g. ERP connection)

of the IPs, connectors are used.

 Database connectors to the databases are realized using programming language

specific connectors (e.g. JDBC). In contrast to the approach to use a database for

every microservice, only one will be implemented for each IP. If needed additional

ones can be included.

The following figure depicts the architecture with the applied guidelines. Front-end

and the back-end are separated by a reverse proxy, this is for simplification and se-

curity reasons.

 JSON
User

Device

Database

Connector

Connector

 JSON

 JSON

 JSON

 JSON

 JSON

Reasoner
REST

API

Building

Block

REST

API

Building

Block

REST

API

Proxy
REST

API

 JSON

Database

Building

Block

REST

API

ERP

Figure 3: General guidelines

 Deployment

3.1

3 Deployment and Testing

3.1 Deployment

As already stated Docker is used as deployment tool, since it simplifies the deploy-

ment efforts by minimizing the dependencies between the building blocks. Though

Docker reduces the dependencies, Docker is not a classic deployment tool, demanding

that the project follows a general approach for the deployment of the developed and

tested Docker containers. In line with the principles of agile software development,

containers are deployed continuously as they are released in order to get the imme-

diate feedback from the workers.

Phase I – development phase – constitutes the traditional software development

circle, which consists of requirements definition, technology development and tech-

nology deployment. The project aims to deploy a first set of building blocks and com-

ponents to be tested at the industry partner’s sites together with workers in the fol-

lowing phases. To build up a first user-base of workers, these BBs will remain open

for tests and refinements of requirements until the end of the project. The goal is to

quickly demonstrate benefits to the involved workers on the shop floor in order to

ensure a high technology acceptance and to receive feedback to be integrated in the

development on a very early stage.

Phase II – refinement phase – can be considered as the first prototype stage. A first

version of building blocks is available at the industry partner sites, but they are not

fully stabilized and finished according to the expectations of workers and to the or-

ganizational boundaries. This phase starts with an evaluation of the developed BBs

on both, technical level as well as together with workers. Improvements will be de-

veloped iteratively and included into the refinement of BBs.

Phase III – perpetual beta – includes the continuous evaluation of the BBs, improve-

ment as a result of the integrated evaluation feedback, as well as the integrated

FACTS4WORKERS solution. We expect an increasing number of workers piloting the

solution at the industry partner sites and thus a higher quantity and quality of feed-

back and recommendations. Qualitative user feedbacks using innovative approaches

like thinking aloud or emotion tracking will provide more detailed insights and gen-

erated benefits. For further information, please refer to deliverable D6.1. The last step

is to transfer BB into a more generic FACTS4WORKERS solution with respect to se-

lection, integration and maintenance. This solution to be developed will result in a

powerful platform ready for exploitation in various production scenarios and appli-

cable to a wide range of manufacturing employees of all ages carrying out manufac-

turing tasks at small and medium-sized enterprises (SME) as well as at large-scale

enterprises.

 Deployment and Testing

 18

3

Further detailing the three-phase approach, the first phase aims to create mock-ups

and demonstrators, the second phase validators, and the third phase pilots for the

specific use cases of the industry partners. From a deployment perspective, following

steps are necessary:

Mock-ups

Mock-ups are developed to present a draft of the “look and feel” of the software to

the future users (workers) in order to gain quick feedback from them. Mock-ups

consist of images or simple HTML pages indicating the appearance of the Human

Machine Interface (HMI). A simple navigation is possible but not required.

Demonstrator

In addition to mock-ups, demonstrators show a proof of concept and take test data

into account. This enables a feedback in terms of requirements verification, feasibility

of the software, and implementation concept using dummy data. Following this ap-

proach, fast iteration loops to adjust and refine the solution proposal are possible.

A demonstrator can be seen as advanced mock-up, allowing to review the workflow

and the navigation. Therefore, demonstrators are realized using “dummy data” show-

ing the intended interaction with the HMI.

First implementation (Validator)

This requires working BBs and designated hardware as well as test data for verifica-

tion. Requirements have to be completely defined in advance. With the first imple-

mentation validator, Docker containers are in place for deployment and testing. As it

is the first implementation, maybe not all security needs or all final requirements are

already fulfilled, but it shows clearly where the direction is going. The first implemen-

tation could also be used temporarily on the production site to let the worker review

the solution in running conditions.

Continuous deployment phase (Validator)

After a first implementation follows further development of the services and there-

fore of the Docker container. The container and services will evolve to be more ge-

neric, so they could be reused in several similar cases. Together with the implemen-

tation, the development of the connectors for software integration on the industry

partner side starts.

 Deployment

3.1

Final implementation (Pilot)

The final step - which is the on-site pilot implementation covering full functionality –

leads to the perpetual beta status with required interfaces implemented and de-

ployed. The software is at this point is already in a state where it could be used in the

company environment.

The following overview extends the overview of deliverable D1.2 by linking the tech-

nology readiness levels (TRL) to the different deployment steps:

 Aiming for Functionality Hardware
Corresponding

Dataset
TLR

M
o

ck
-u

p

Proof of fea-

sibility

None - Functions are

faked, e.g. Power-

Point, Balsamiq-Mock-

up, HTML-Click-Mock-

up etc.

Standard-Hardware

e.g. Standard Tab-

let (OS not critical)

or not digital device

(paper based)

none 1

D
e

m
o

n
st

ra
to

r

Proof of

concept

(for the

technology

building

blocks in-

volved)

Key functions as I/O

functions are working

(maybe in another

context) but can be

explained and showed

Designated hard-

ware type, e.g. tab-

let or SmartGlass,

but not necessarily

final hardware or

OS

Test data-set or

dummy-data, of-

fline/local

2-3

V
a

li
d

a
to

r

Proof of

value

Some functionality of

Use case is covered,

building blocks are

working

Designated hard-

ware

At least test

data-set
4-5

P
il

o
t

Proof of use

(on site eval-

uations of

project tar-

gets)

Use case functionality

is fully covered, meas-

urement of productiv-

ity and attractiveness

can be done

Designated (off-

the-shelf) hard-

ware, freely availa-

ble to consumers,

provided by IP

Actual/Live data,

software inter-

faces (bi-direc-

tional if re-

quired)

6-7

Figure 4: Deployment steps and TRL

All steps include a feedback loop with the workers and project partners. With feed-

back loops, it is ensured that the development is still on the way to a worker centric

solution.

 Deployment and Testing

 20

3

3.2 Testing

Testing includes code testing on the one hand side and usability testing on the other

hand side. Code testing mostly relies on the development partners, and usability test-

ing includes all partners, in particular the shop floor workers at IP sites.

3.2.1 Code testing

As worker satisfaction relies closely on a functioning software, the functionality test-

ing is of high importance. The following tests have to be performed for the individu-

ally developed building blocks:

 Code testing

 Integration testing of multiple BBs

 BB specific deployment testing

 Testing of the deployed software

After development, BBs are going to be tested individually using real data provided

by the industry partners. Afterwards, each BB get integrated with the corresponding

BBs (front-end, back-end, reverse proxy and/or semantic workflow engine) in order

to form a functional service. Occurring bugs regarding the workflow between BB are

identified and fixed. If this test is passed, a BB is ready to be integrated within the

already deployed FACTS4WORKERS solution and the IT system of the company. This

allows the workers to actively use the service and report if any further error or mal-

function occurs during usage. Referring to chapter 2.2 (Roles and Responsibilities),

front-end developers, back-end developers and system integrators participate in code

testing.

Front-end & back-end Developer

Developers are responsible for testing the code of the BBs and for adapting them to

the feedback from the worker:

 Test the developed code

 Test the workflow between BBs

 Fix bugs

 Receive feedback

 Adapt and release adapted BBs

 Testing

3.2

System integrator

System integrators are in charge of deployment and integration of the implemented

solutions at the partner sites in cooperation with the responsible IT:

 Deploy the Docker containers at the industry partners

 Configure the reverse proxy

3.2.2 Usability and requirements fulfillment testing

Due to the user-centered approach of this project, main emphasis is put on tests re-

garding the usability and the requirements fulfillment. As described in detail within

deliverable D6.1, corresponding tests and evaluation consists of two major steps:

 Gathering of indirect feedback

 Interview users

Gathering of indirect feedback from users can be done by monitoring their behavior

during usage. The advantage of this method lies in the possibility of revealing implicit

wishes and needs, whereby their fulfillment leads to an increase in the workers’ sat-

isfaction above average. Interviews cover direct feedback of workers where they have

the possibility to express their thoughts and feelings regarding the new software tool.

For more information, please refer to D6.1.

The testing activities will be performed repeatedly during the deployment of a solu-

tion covering a full use case. After users have spent some time testing the new func-

tionalities, they will be asked about feedback regarding their experience and possible

disadvantages. Together with the automatically gathered feedback, the collected in-

put will then be used to further improve BBs. Involved roles in the usability testing

process are evaluators and IPs with users on different levels from shop floor to man-

agement

Evaluator

Evaluators are in charge of collecting feedback from users and providing it to the de-

velopers.

 Collocate testing parameters

 Author testing procedure and framework

 Gather feedback from workers

 Provide developers with the feedback

 Deployment and Testing

 22

3

Industrial Partner

The industrial partners are responsible for testing the provided services:

 Deploy a testing team

 Test the software in context of the respective processes

 Provide feedback regarding usability and errors/malfunctions

 Generic hardware technology overview

4.1

4 Generic Hardware and Software

Architecture

This chapter aims to provide an overview over the software and hardware compo-

nents of the FACTS4WORKERS solution. Subchapter 4.1 gives a generic overview

over the devices on the client and on the server side. Subchapter 4.2 then states the

software technology used in the project. Since the general approach of providing

small interconnected services is the core competence of Docker, subchapter 4.3 de-

scribes the technology.

4.1 Generic hardware technology overview

As stated in Chapter 2, the FACTS4WORKERS solution follows a classic server-client

model. The following figure shows an example of the connection between the hard-

ware components.

Other server

ERP server

Company Firewall Smart phone

FACTS4WORKERS

SERVER

Cloud application/data

Data gathering

sever Desktop PC

Tablet

Smart devices

(watches, glasses,

etc.)

LAN

WLAN

Figure 5: Example of possible connections

 Generic Hardware and Software Architecture

 24

4

 Three major hardware components are forming the FACTS4WROKERS solution:

 Devices

 Servers

 Network components

4.1.1 Devices

Within industrial company environments, common user groups using similar devices

can be identified. The following description lists considerations that have to be taken

in account when providing workers with a smart device. For a detailed description of

smart devices, please refer to D2.1.

Office worker

Office workers are employees already working on a desktop PC. It is not foreseen to

introduce special devices. Instead, the FACTS4WORKERS solution can be accessed us-

ing existing infrastructure components. Further considerations regarding the envi-

ronmental conditions do not have to be made. In addition, the devices are most likely

already connected to the local network, which allows to access the FACTS4WORKERS

server. More emphasis is put on the software side, respectively the graphical user in-

terface (GUI). The resulting requirement is, that the used front-end technology works

on desktop PC in the same way it does on mobile smart devices.

Shift leader

Like office workers, shift leaders are mostly using desktop PC to perform their tasks.

If they are not strictly bound to their PC or if they have to change their location, it

might be necessary to additionally equip them with mobile smart devices, e.g. tablets.

Workers on shop floor level

Workers on the shop floor commonly have to access the FACTS4WORKERS solution

using a smart device. The following considerations have to be taken in account:

 A fixed working environment allows the adaption of the device to the specific con-

ditions.

 Depending on the working environment the device needs to be resistant against

rough conditions, e.g. shock, dirt or fluids. Particular standards apply, such as the

US Military Standard 810 [MIL-STD-810G, 2016]. For more information, please re-

fer to D2.1.

 Generic hardware technology overview

4.1

 The display and the GUI elements have to be large enough to be operated in rough

environmental condition and to be able to gather the needed information easily.

 The display has to be bright enough even under changing conditions.

Workers in changing work areas

Workers in changing work areas also need a flexible mobile device to access the

FACTS4WORKERS solution. In addition to the considerations made above, the follow-

ing points have to be taken in account:

 Changing working environments complicate the adaption to the specific environ-

ment.

 Working outdoor requires specific considerations (e.g. protection against rain for

outdoor maintenance, please refer to D2.1).

 The device has to be lightweight to avoid hampering of workers.

 The device needs to be able to access the servers using different communication

standards since one may not be available at all times. The device should mainly

access the local network using WiFi. At some places, especially large industrial

plant areas, WiFi connections are not available. Therefore, mobile cellular phone

networks (UMTS/HSDPA/LTE) have to be supported by the devices in some use

cases.

4.1.2 Servers

The FACTS4WORKERS solution requires a dedicated but not extraordinary server

hardware environment for running the different services within the Docker environ-

ment. The reason behind this is described in chapter 4.4. The following considera-

tions have to be taken in account before setting up the servers:

FACTS4WORKERS server

 For running Docker, the FACTS4WORKERS server has to work on an LINUX based

operation system. Since the server is a central element of the solution, it has to be

fail-safe and secure.

 The software Docker Compose is required for an easier running of multi-con-

tainer applications.

 As long as Docker and Docker Compose can be installed, no specific hardware or

software is required.

 The Semantic Workflow Engine runs as a Docker container. Operation is possible

on every server fulfilling the above-mentioned requirements.

 Generic Hardware and Software Architecture

 26

4

 Due to the usage of Docker, it is possible to use a dedicated server or virtual server

to host the Docker containers. On premise installation as well as usage of a cloud

server is possible. The impact of Docker within the project is described in chapter

4.3.

4.2 Used software technology overview

The FACTS4WORKERS solution is characterized by providing a wide range of func-

tionalities supporting worker in different processes on the shop floor. To deal with

the arising complexity and to develop functionalities suiting the workers’ needs, dif-

ferent technologies, frameworks and programming languages are used within the

project.

Figure 6: Architectural overview

For the front-end BBs, the markup languages HTML5 and CSS3 and the framework

Angular2 (JavaScript) are used in combination. The back-end BBs are created using

frameworks like Rails (Ruby), Spring (Java), Flask (Python), Phoenix (Elixir) or the

programming language Go, depending on the requested requirements. For communi-

cation and exchange of data between the different BBs, either a proxy or a direct com-

munication is implemented. In case of more sophisticated tasks, communication on

back-end side is realized by a semantic workflow engine. Due to the used technology,

 Used software technology overview

4.2

a reverse proxy is used to bundle all communication between the HMI and the back-

end BBs.

This chapter introduces the core technologies and paradigms for the transfer of data

within the FACTS4WORKERS system.

Communication and routing

 Hypertext Transfer Protocol (HTTP)

 JavaScript Object Notation (JSON)

 Representational State Transfer (REST)

 Reverse Proxy

 NodeJS

Front-end

 Hypertext Markup Language (HTML)

 Cascading Style Sheets (CSS)

 Angular 2

Back-end

 Ruby

 Spring

 Phoenix

 Flask

 Go

4.2.1 Communication and routing

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a stateless protocol for the exchange of

data in distributed, hypertext information systems, such as the World Wide Web. It

can be used in any system for the exchange of data between distributed units [Internet

Engineering Task Force, 2015]. HTTP takes care of addressing objects using a uniform

resource identifier (URI), handling the interaction between the client and the server

and adjusting the formats between them. HTTP communication follows the request-

response-pattern. Server responses contain a HTTP status code indicating the status

of the transaction [Internet Engineering Task Force, 2015].

 Generic Hardware and Software Architecture

 28

4

Status code Meaning Examples

1xx Information 100: Continue

101: Switching protocols

2xx Success 200: OK

202: Accepted

3xx Redirection 301: Moved Permanently

302: Moved Temporarily

4xx Client Error 400: Bad Request

401: Unauthorized

402: Forbidden

404: Not found

5xx Server Error 500: Internal Server Error

502: Bad Gateway

503: Service Unavailable

Figure 7: HTTP status codes

Representational State Transfer

Representational State Transfer (REST) is an architectural style for creating and or-

ganizing distributed systems. While the main application field lies within the inter-

connection of web services, it can be applied on any distributed system using any

transfer protocol as long as the following constraints are met [Doglio, 2016]:

 Client-Server: One principle is the separation of front-end and back-end software

code. This enables the independent development of both sides improving the flex-

ibility of the application.

 Stateless: Communication between server and client is stateless. This means, that

every request from client to server needs to contain all information needed for

the server to understand the request without accessing stored data.

 Cacheable: This constraint imposes that every response to a request has to be

cacheable, allowing the system to store and bypass certain requests in order to

favour others.

 Uniform Interface: By demanding a uniform interface between the system com-

ponents, interaction with the system is simplified. Implementation of the client is

independent from the server providing a clear set of rules to follow.

 Layered System: As REST is designed for web applications, it is expected that a

respective software implementation works properly, even when dealing with

high traffic volumes. By separating the system components into layers, the com-

plexity of the system is reduced. Especially for large systems, this provides a ma-

jor benefit.

 Used software technology overview

4.2

JavaScript Object Notation (JSON)

The JavaScript Object Notation is a compact and lightweight format for the exchange

of data. Based on the syntax of the JavaScript programming language, it was designed

to be easy to read and write. Despite the name, the format is completely independent

from any programming language. JSON strings can be built as objects or arrays [JSON,

2016]:

Objects are unordered lists of name/value pairs enclosed by curly braces. Inside the

braces, name/value pairs are separated by commas. The values are split up from their

name using a colon.

Figure 8: JSON objects [JSON, 2016]

Arrays are ordered lists of values enclosed by square brackets. The values are sepa-

rated by commas.

Figure 9: JSON arrays [JSON, 2016]

NodeJS

NodeJS is based on the Google V8 engine, an open source project that compiles JavaS-

cript to native machine code. The deployment of a compiled language allows usage of

JavaScript for server or back-end applications. Additionally, programming principles

like the event driven approach, known from front-end applications, can be used for

back-end code. This results in some great advantages making use of this programming

language [Doglio, 2016]:

 Asynchronous programming: NodeJS is designed for programming applications

that make use of the asynchronous programming method, making the implemen-

tation of its principles easily.

 Simplicity: Based on a the popular and wide spread language JavaScript, it is easy

to learn and understand NodeJS.

 Effective integration of JSON-based services: Since JSON and NodeJS are based

on the same syntax, JSON based services can be integrated easily and effectively.

 Generic Hardware and Software Architecture

 30

4

For the semantic workflow engine, the programming language NodeJS is used due to

its asynchronous character. On the front-end side, this allows to process request as

they arrive. Thereby, threads waiting on input from the HMI can be suspended to pro-

cess other request in the meantime. On back-end side, the SWE does not expect an

answer for every communication with a building block. Instead, the process flow di-

rectly moves forward and reacts on responses as they arrive. This concept speeds up

the overall process flow, enabling large amounts of requests in a short time period.

Reverse proxy

A reverse proxy, as the one used within the FACTS4WORKERS solution, requests re-

sources for the client from one or more servers and returns them, as they only come

from the proxy itself. Since the proxy is visible over the internet connection, it is not

necessary irrelevant that the client knows the storage location of the specific re-

sources within the network [Du et. al., 2011].

4.2.2 Front-end

Hypertext Markup Language

The Hyper Text Markup Language (HTML) is, as the name indicates, a plain text mark-

up language mainly used for web pages and web applications. The purpose is to struc-

ture the content of the document and to provide a semantic description using a stand-

ardized structure [World Wide Web Consortium, 2014].

To meet with the increasing demand for interactive content, HTML5 implements dif-

ferent APIs, making the usage of proprietary plug-ins or custom programming for

basic APIs obsolete. The most common APIs cover the usage of multimedia content or

WebSockets for the open connection between the client and the server in real time

[World Wide Web Consortium, 2014].

Cascading Style Sheets

While HTML defines the structure of a web document, Cascading Style Sheets (CSS)

define its appearance. The idea is not to apply styles directly to the individual ele-

ments, but to store the styling rules in a separate document and reference them to the

HTML elements offering the following advantages [Powers, 2013]:

 A clearer, less-cluttered HTML code leads to advantages while authoring, reading

or maintaining it.

 Defining or adapting the look of the document across several pages can be done

by editing just a single source.

 Used software technology overview

4.2

 Authors have an extended control over the look of the document.

One important feature of CSS is the way the rules are applied. While a web browser

includes the styling rules into the HTML document, commands get executed one after

the other. This makes it possible to first define a basic style for the whole document

and later on define separate rules for specific areas whereby the initially rules are

overwritten [Powers, 2013].

Angular 2

Created in 2009, AngularJS is an open-source client-side web application framework

based on JavaScript. The main goal is to promote the productivity during web devel-

opment and lower necessary efforts for building a natural and fluid looking web ap-

plication. To achieve this, Angular extends the HTML syntax by adding new vocabu-

lary and functionalities. In 2016 the newest version – Angular 2.0.0 – was released

[Branas, 2013].

When a web page is loaded, a browser sends a request and waits for the response.

When a HTML document or parts of it are received, the browser analyses its content

and builds the Document Objet Model (DOM) tree. Afterwards, the AngularJS compiler

analyses the DOM model regarding special elements known as directives. A directive

is an extension of the HTML vocabulary that allows the creation of new behaviors,

meaning that the developer can create reusable components looking like HTML syn-

tax. By default, the Angular 2 framework provides a set of standard variables taking

care of the data connection between the model and the view [Branas, 2013].

Within the project, Angular 2 is used as front-end programming framework due to its

modularity and reusability. The structure of Angular encourages a strict separation of

different modules and services. This encourages the reusability and allows the usage

of the building blocks crossover the different use cases.

4.2.3 Back-end

As Docker encapsulates the programming code inside containers, different building

blocks can be created using different programming languages and frameworks.

Thereby, web frameworks support the creation of REST-APIs by providing a standard

basis and standard solutions that can be adapted. Within the project we currently use

Ruby on Rails, Spring, Flask, Phoenix, Go and NodeJS. These frameworks, or in case of

Go and NodeJS the programming languages, are very common in usage, well docu-

mented and especially known for providing APIs. In the following, we provide an out-

line of the mentioned frameworks/languages with their characteristics, strengths and

advantages within the project.

 Generic Hardware and Software Architecture

 32

4

Rails

Ruby on Rails is a web development framework based on the programming language

Ruby. It provides a time-tested approach to keep medium and large size applications

clear and maintainable. The great advantage of Rails is that the framework contains

almost everything needed for creation of a functional product [Raymond, 2007].

One of the most common tasks during the web development project is the creation of

a web-based user interface to manage a relational database. Targeting this problem,

Ruby on Rails introduces several features interesting for the project. This allows to

implement a database-backed user interface in short time [Tate et al., 2006]:

 Active Record: Part of Rails is the active record framework that is responsible for

the object storage in the database. Based on a design pattern, Rails automatically

discovers the columns in the database schema and attaches them using metapro-

gramming.

 Built-in testing: Rails automatically creates extendable automated tests for sim-

ple applications.

 Three environments: development, testing and production: Rails provides the

three default environments development, testing and production. Since each of

them behaves slightly different, it eases the application development cycle.

Within the project, Ruby on Rails was chosen because of the following advantages:

 It is capable of handling database migrations, allowing to ship Docker containers

that can autonomously handle database schema upgrades.

 In development environment, Rails supports dynamic class reloading; removing

completely the code-compile-deploy development cycle typical of other lan-

guages allows for a huge improvement in development velocity.

 Ruby on Rails improves standard ruby testing framework with lots of web

friendly checks. REST calls can be easily tested with few lines of code without the

need of performing API call simulation with external tools.

 The ruby community puts a huge effort in the way of handling software depend-

encies, libraries are called gems and are collected in a central repository. If

needed, the right gem can be searched in just one place and added to a Rails pro-

ject with just a line of code.

 As an extra feature, Ruby on Rails containers are officially supported by Docker

Inc.

With this in mind, we consider Rails as a safe and sure starting point for the Building

Block development.

 Used software technology overview

4.2

Spring

Developed in the programming language Java, Spring is a lightweight framework for

building web applications. Well known for distributed transactions, it assures a high

reliability and scalability. Designed as meta-framework, Spring can be implemented

independently from any particular platform. Furthermore, Spring includes several

mechanisms for assuring the safety of the created web applications. Based on its ar-

chitecture the framework offers the following advantages [Spring, 2016]:

 Unit-tests can instantly be performed without the need of creating corresponding

programs

 Spring offers a consistent framework for the data access

 Business-interfaces can be implement as Java-classes

Based on a modular structure, the framework offers a great amount of functionalities,

which can independently be implemented, allowing the developer to freely choose

the included range. Furthermore, Spring supports the integration of other frame-

works easing development of applications [Spring, 2016].

Spring is a widely known, well-established framework. Within the project, Spring is

used because of its wide range of embedded features, offering well tested standard

solutions for many problems.

Phoenix

Written in Elixir, Phoenix is a web development framework for the creation of server

side applications using the MVC pattern. Aiming for high productivity and application

performance, the framework Phoenix is made up out of distinct parts with specified

purposes [Phoenixframework, 2016]:

 The Endpoint handles the requests and dispatches them into the designated

router.

 The Router parses the requests and sends them to the controller.

 The Controller provides the actions or functions in order to handle the requests.

 The Views act as view-layer and render templates.

 The Templates are precomputed models minimizing the programming efforts.

 The Channels manage the sockets in order to provide real-time communication.

Phoenix is elixir's "Ruby on Rails". With the exception of the official support by

Docker, all the Rails benefits also applies to phoenix. When dealing with the Data An-

alytics BB, we were concerned about the response time and the number of concurrent

requests. This BB should provide near real-time information about the production

 Generic Hardware and Software Architecture

 34

4

lines in order to display control charts and detect potential errors. To meet this re-

quirement, Phoenix was chosen because of its short response time and the possibility

to process a large number of concurrent requests.

Flask

Flask is a micro-framework for the programming language Python, meaning that it

aims to keep the core of the framework small and only provide the basic services. At

the same time, the framework is highly extensible allowing the programmers to

choose the extension packages needed [Grinberg, 2014].

Within the Flask framework, there is no native support for validation web forms, ac-

cessing databases or other high-level tasks. These key services and others most web

applications need are included through extensions and integrate with the core func-

tionalities giving the developer the power to choose the ones which fits best the cur-

rent needs [Grinberg, 2014].

Within the project, Flask is used due to being a minimalistic framework, including

only absolutely necessary extensions. To support full functionality, needed services

like REST-APIs can easily be included. With the focus on being light-weighted, Flask

focuses on easy customization. This allows to adapt the framework to the individual

needs of the BB.

Go

Go itself simply offers a way to handle incoming HTTP request, all the rest is up to the

developer. There are object relational mapping libraries that can help to convert data

between incompatible type systems, but database migrations still have to be handled

manually.

The lack of many advanced features brings a very small memory footprint, a native

support for multithreading and a low-level access to the HTTP body.

Go has been chosen as the language for Multimedia BB, because the API definition is

really simple and from the kind of data handled arises complexity. File upload in JSON-

based REST API is a tough matter. Frameworks usually want to impose multi-

part/form-data encoding which is typical for a web form. Go offers any kind of HTTP

body parser, allowing us to use a multipart/related composed of JSON metadata and

the uploaded file.

Although being a very simple and low-level language, Go features some very rich test-

ing libraries, allowing us to obtain the same expressivity in tests of Ruby on Rails and

phoenix.

As an extra feature, Go containers are officially supported by Docker Inc.

 Semantic workflow engine

4.3

4.3 Semantic workflow engine

4.3.1 Introduction

Modern shop floors rely on a large amount of services provided from different sources

that have to work together properly in order to fulfill the business goals. As in general

the diversity and number of production machines and devices increases constantly,

the integration of new units to the existing systems becomes increasingly complex as

well. To deal with this problem, the usage of workflow systems effectively reduces the

needed tasks for setting up of new machines and services by making the manual inte-

gration obsolete.

4.3.2 Strength of the Semantic Workflow Engine within the Project

By giving access to the building blocks through RESTful Web APIs, which semantically

describe the functionality of the service, the semantic workflow engine (SWE) is able

to understand these descriptions and combine them in order to achieve a desired goal.

Thereby, the system is completely flexible, so that the workflow engine can take in-

terchangeable BB and combine them to achieve the needed functionality [Arndt et. al.,

2016].

Overall the semantic workflow engine ensures the following advantages:

 The semantic workflow engine eases the maintenance of the workflows. New com-

ponents can be integrated by adding their functional descriptions and no longer

required components can be removed by deleting these descriptions.

 New tasks can easily be integrated using existing building blocks, as the SWE is

aware of the BB functionalities. After defining the goal of the new tasks, the SWE

is capable of automatically combining the needed BBs to achieve this goal.

 The easy implementation lightens the deployment process. This favors to start

with a first implementation using a small set of building blocks and then enrich is

over time.

 When a building block does not respond, another can take over.

4.3.3 FACTS4WORKERS example for the semantic workflow engine

For better understanding of how the semantic workflow engine works, we provide an

example:

 Generic Hardware and Software Architecture

 36

4

Starting point is an autonomously produced product. However, sometimes the prod-

uct does not meet the quality requirements or is defective. In these cases, the worker

is responsible for noticing, and if possible finding a solution and correcting the prob-

lem. Without the help of the FACTS4WORKERS solution, the worker would have to

talk to colleagues and search for help till someone is able to fix the problem. This is

time consuming and leads to the dissatisfaction and demotivation of the worker.

Even with a supporting information system following a static workflow, the worker

would always need to follow the systems workflow to access the needed information.

Thereby, the worker would have to search the current issue manually in a fault data-

base and select the most fitting error in a list of all possible errors. Afterwards, the

worker would need to review possible solutions and choose the most promising.

By using the SWE, the workflow can be adapted dynamically. Doing so, the SWE needs

two inputs: a concrete precondition and a wished outcome. Let us assume the worker

detects a product error (e.g. material defect) he is not familiar with (precondition). In

this case, the worker is looking for input about how to fix this issue (wished outcome).

Having these two inputs, the SWE will dynamically create a workflow to achieve the

wished outcome.

 Figure 10: SWE schema

In addition, if there is only one problem and one solution that meets the current issue,

there is no need for showing the worker a list of all possible errors and solutions.

Instead, the problem and solution descriptions will be displayed immediately with no

need for the execution of the steps in between, reducing the required interaction and

 Docker

4.4

therefore preventing an information overload. Besides, using a dynamic workflow al-

lows to easily extend or alter the workflow, for example by taking the workers skill

level on the specific product into account. If the worker is not experienced enough to

fix the problem himself, the semantic workflow will directly offer the worker an op-

tion to contact a person that is available and trained enough to solve this specific

problem.

In conclusion, the SWE can be used in cases where different workflow can be used for

solving a problem. The SWE is like a navigation system that guides the user on the

fastest and easiest way to his goal.

4.4 Docker

4.4.1 Introduction

Docker is the selected tool for the deployment of the FACTS4WORKERS solution, con-

sisting of several BBs that are configured and deployed within the different industry

partner use cases. Docker uses so called “containers”, which capture everything that

is needed to run a chosen software (e.g. code, runtime, system tools, system libraries,

binaries, dependencies, etc.). Docker containers represent one encapsulated unit of

functionality to the “external world”. In this way, it is assured that the code will run in

any selected environment the same way [Docker, 2016].

By using libcontainer, cgroups and other lower level Linux components, Docker con-

tainers run isolated without the need of a fully build operating system. However, these

components are typically used for process isolation in Linux. Therefore, Docker cur-

rently is mostly used on Linux distributions [Janetakis, 2015]. Since mid-2016 Docker

is also available for Microsoft Windows Server operation systems, limited to the ver-

sions Windows Server 2016, Nano Server, Windows 10 Professional and Enterprise

[Docker for Windows, 2016]. However, since Docker for Windows requires special

Windows containers, we decided to support only Linux containers. Concerning the

integration and deployment workflow, the Docker approach provides the following

benefits:

 Support of developers by simplifying options to submit their software develop-

ment work for deployment in different scenarios and use cases

 Bundling of application and needed operating system in one specific image

 Use of packaged parts of an application for testing and distribution to particular

target-environments

 Reduction of dependencies from specific hardware requirements

 Generic Hardware and Software Architecture

 38

4

Through the usage of Docker containers, developers can build their software without

consideration of specific settings of the target environment and deployment issues.

Developers simply create and test software in their development environments and

then form a Docker container of all needed software and dependencies. Docker con-

tainers are shipped as a whole to system integrators for implementation in the envi-

ronment. By using this approach, developers and system integrators reduce their

need to do iterative adaption cycles together. This saves considerable efforts in an

agile software development cycle. [Matthias et. al., 2015].

4.4.2 Containers versus VMs

In general, a container is an independent, isolated environment that is used to execute

the contained software. There are some distinct advantages of the Docker technology

in comparison to the well-known Hypervisor or Virtual Machine (VM) technology.

The following paragraphs outline, why the decision was made for the use of Docker

within FACTS4WORKERS.

Resource Efficiency

VMs need considerable resources, which means the performance of the system de-

creases significantly with the number of deployed VMs on a host system. As shown in

Figure 11, to run three applications with different requirements it is necessary to run

three distinct VMs on a host system and a complete operating system on each VM.

Depending on the hardware, it is only possible to run a limited number of VMs on one

host system

In contrast to VM, Docker uses the kernel of a host system together with other con-

tainers [Matthias et. al., 2015]. Hence, there are no additional operating systems re-

quired that consume host system resources. Consequently, a lot more Docker con-

tainer units can be deployed on the same hardware than it would be possible with

VMs. [Raj et. al., 2015] This makes the usage of containers highly efficient concerning

the usage of hardware resources, as there is no need for a distinct operating system

for each isolated function [Mouat, 2015]. As shown in Figure 12, the same three appli-

cations as above could be deployed by the use of Docker containers that would use

the same kernel as the host system.

Another benefit regarding resource efficiency is that in contrast to running an appli-

cation natively an operating system, Docker containers need significantly less over-

head data. [Mouat, 2015]. Despite of these differences, both approaches are equivalent

in all matters concerning the end-user experience. By the use of Docker, it is a lot eas-

ier to scale from a use case solution to a company wide solution, which is an interest-

ing aspect for scalability and particularly interesting for the FACTS4WORKERS pro-

ject.

 Docker

4.4

Figure 11: Structure virtual machines [Docker, 2016]

Figure 12: Structure of Docker containers [Docker, 2016]

Persistence

VMs are used especially for long-term abstractions of real hardware. On the opposite

site, containers could be used to serve one particular task and be deleted when the

task is no longer needed. Since the FACTS4WORKERS project follows an agile soft-

ware development process, several steps are undertaken to create the final solution.

Therefore, small containers serving a particular task are more suitable to distribute

among partners than bigger sized VMs. [Matthias at. al., 2015]

Isolation

Although Docker containers as well as VMs provide an isolation of applications from

each other, the isolation provided by VMs can be seen as “one level higher”, as appli-

cations can even by isolated by different operating systems. VMs are completely iso-

lated from the other VMs as well as from the underlying host system. Docker contain-

ers are isolated on process level and hence, they are liable for any kind of security

incursion. As this point is critical, it is better to have a stronger isolation for software

that is still in development. For this reason, a VM or dedicated server running Docker

containers only for FACTS4WORKERS services is recommended. [Raj, et. al., 2015]

 Generic Hardware and Software Architecture

 40

4

Portability

For the use of Docker containers, it is only necessary to set up the container engine,

distribute and deploy the respective container, which can be seen as a capsule around

a process [Matthias et. al., 2015]. This characteristic makes containers easily movable,

very compact, and clearly detached and requires only minor deployment effort [Raj

et. al., 2015]. When using VMs on the opposite, it is necessary to set up an individual

VM for each application, which usually takes considerable efforts, particularly be-

cause time-consuming configuration tasks are required to get the application running

[Mouat, 2015].

In summary, this table lists the mentioned aspects in a clearly arranged way:

 Virtual Machines Docker Containers

Resource

Efficiency

Need an additional operating sys-

tem. Only a few VMs can be de-

ployed on a single physical host sys-

tem.

Use the same Kernel as the host sys-

tem. Many containers can be de-

ployed on a single physical host sys-

tem.

Persistence Usually long-term oriented. Can be used for several months or

even to run containing application

only once.

Isolation Isolation starts at the level of the

operation systems. Full isolation of

VMs.

Isolation happens on process level.

No isolated operation system

Portability Require significant effort to distrib-

ute and deploy an application

Are easily distributable and deploya-

ble.

Figure 13: VMs versus Docker Containers

4.4.3 Strength of Docker within the Project

Concerning the deployment of the developed software solutions, the project

“Facts4Workers” faces particular challenges:

 Research partners of the project are spread over Europe and each partner has

different competences and preferences concerning the used software to build the

final solution.

 Industry partners have running infrastructure and production lines that must not

be disturbed. Therefore, each solution has to be designed as fully capable of being

integrated in the existing system of each industry partner. Additionally, there are

very different existing IT solutions on the partner sides.

 The overall approach is to increase worker satisfaction and to develop solutions

that fit as good as possible to the working process of the worker. This increases

the complexity of the development process, as it adds a whole new level of re-

quirements and limitations.

 Docker

4.4

In consideration of these challenges, deployment of the build solutions needs close

attention to reduce the possibility of error as much as possible. FACTS4WORKERS so-

lutions will include back-end software code written in different programing lan-

guages as well as a combination of, for example, SQL-databases, JavaScript frame-

works and other programming languages. In addition, these parts have to run on a

variety of soft- and hardware environments at the industry partner locations. Hence,

to meet the given requirements, the approach of Docker containers to standardize

and modularize IT building blocks that perform a particular encapsulated task, is a

very useful tool to use.

Usually the process of developing and deploying software can be a tedious task. There

is normally an enormous demand for interdisciplinary exchange of different teams,

which are highly dependent and have to understand each other’s work [Matthias et.

al., 2015]. With Docker, these circumstances in the FACTS4WORKERS project are no

longer a problem to handle. Implementation partners are able to develop their build-

ing blocks as full functional containers, that provide the required microservices.

These microservices provide portability and flexibility that is needed to create the

best suiting and efficient IT-processes FACTS4WORKERS aims for. Possible changes

can be deployed quite quickly by simply changing the specific container, allowing

parts of the solution to be improved without having to change the whole system. Usu-

ally even small changes in the environment of a native running application could

cause several forms of errors or malfunctions. Using container services, small changes

on a single container have no impact on the functionality of the whole application and

furthermore, assure that no bugs can corrupt the system of the industry partner.

As containers include everything an application needs to run, they are highly inde-

pendent from the given environment. After distributing a container, industry partners

neither need to adapt their system nor have to make big efforts to configure the ap-

plication. As containers are independent from their environment, once they are de-

ployed, they can be run without substantial effort.

Of course, a system constructed of countless of these microservices includes a high

complexity affecting the interaction between these services. Therefore, the deploy-

ment and implementation of the IT-solutions needs special attention to ensure, a sta-

ble and high-quality result.

In foresight, it may also be a benefit for projects in the future, that most of large public

clouds have made their systems compatible to Docker (e.g. AWS Elastic Beanstalk,

Google AppEngine, IBM Cloud, Microsoft Azure, Rackspace Cloud). Even Google is go-

ing to use Docker as their preferred container-building tool. This support leads to the

matter of fact, that Docker will probably become the most prevalent system used to

create cloud applications [Matthias et. al., 2015]. Hence, if the IPs would like to deepen

their work with Docker containers or expand the FACTS4WORKERS solution to more

of their IT systems, they can immediately use one of the named services.

 Generic Hardware and Software Architecture

 42

4

In summary, for the implementation of microservices Docker provides a suitable tool

to deploy and manage the individual services.

 References

 44

References

Arndt, D.; Van Herwegen, J.; Verborgh, R.; Mannens, E.; Van de Walle, R.; 2016:

Using Rules to Generate and Execute Workflows in Smart Factories, in: Proceedings of

the RuleML 2016 Challenge, Doctoral Consortium and Industry Track Hosted by the 10th

International Web Rule Symposium, CEUR Workshop Proceedings

Branas Rodrigo; 2014: AngularJS Essentials, Design and construct reusable, main-

tainable, and modular web applications with AngularJS, Packt Publishing, Birming-

ham – pp.3

Docker; 2016: https://www.docker.com/what-docker – 12.07.2016

Docker for Windows, 2016: https://msdn.microsoft.com/en-us/virtualization/win-

dowscontainers/deployment/system_requirements - 27.07.2016

Doglio, Fernando; 2015: Pro REST API Development with Node.js, Apress, New York

– pp.2

Du, Jiang; Nie, GuoXin, 2011: Design and Implementation of Security Reverse Data

Proxy Server Based on SSL, Springer, Berlin, Heidelberg, p.2

Grinberg Miguel; 2014: Flask Web Development, Developing Web Applications with

Python, O’Reilly Media, Sebastopol – p.3

Internet Engineering Task Force; 2015: Hypertext Transfer Protocol Version 2

(HTTP/2), Internet Standards Track document, ISSN: 2070-172 – pp.4

Spring; 2016: https://spring.io/ – 27.06.2016

Janetakis, Nick; 2015: Deploy web apps with Docker, Rescue yourself from the com-

plexity of DevOps, O’Reilly Media, Sebastopol – p.1

JSON; 2016: http://www.json.org/ – 27.06.2017

Matthias, Karl; Kane, Sean P; 2015: Docker Up & Running, Shipping Reliable Con-

tainers in Production, O’Reilly Media, Sebastopol, pp.1; pp. 8; p.15; pp.59; p.104

MIL-STD-810; 2016: http://everyspec.com/MIL-STD/MIL-STD-0800-0899/MIL-STD-

810G_12306/ – 03.07.2017

Newman Sam; 2015: Building Microcervices, Designing Fine-grained Systems,

O’Reilly Media, Sebastopol – pp.18

 References

Mouat, Adrian; 2015: Using Docker, Developing and Deploying Software with Con-

tainers, O’Reilly Media, Sebastopol – pp.3; pp.96

Powers Davis; 2012: Beginning CSS3, Mastering the language of web desing, Apress,

New York – pp.3

Raj, Pethuru; Chelladhurai, Jeeva S.; Singh, Vinod; 2015: Learning Docker, Packt

Publishing Ltd, Birmingham, – p.19; pp.33t

Raymond Scott; 2007: Ajax on Rails, Build Dynamic Web Applications with Ruby,

O’Reilly Media, Sebastopol – pp.10

Phoenixframework; 2016: http://www.phoenixframework.org/docs/overview –

22.06.2016

Summerfield Mark; 2015: Programming in Go, Creation Applications for the 21st

Century, Addison-Wesley, New Jersey – pp.1

Tate Bruce A., Hibbs Curt; 2006: Ruby on Rails, Up and Running, O’Reilly Media,

Sebastopol – pp.1

World Wide Web Consortium; 2014: HTML5, A vocabulary and associated APIs for

HTML and XHTML, https://www.w3.org/TR/html5/ - 27.06.2017

 XLVI

ABOUT THE PROJECT

The high ambition of the project FACTS4WORKERS is to create Factories of the

Future with a pervasive, networked information and communication technology

that collects processes and presents large amounts of data. These smart factories

will autonomously keep track of inventory, machine parameters, product quality

and workforce activities. But at the same time, the worker will play the central role

within the future form of production. The ambition of the project is to create »FAC-

Tories for WORKERS« (FACTS4WORKERS), to strengthen human workforce on all

levels from shop floor to management since it is the most skilled, flexible, sophis-

ticated and productive asset of any production system and this way ensure a long-

term competitiveness of manufacturing industry. Therefore, a serious effort will

be put into integrating already available IT enablers into a seamless and flexible

Smart Factory infrastructure based on work-centric and data-driven technology

building blocks.

These solutions will be developed according to the following four industrial chal-

lenges, which are generalizable to manufacturing in general:

• Personalized augmented operator,

• Worked-centric rich-media knowledge sharing management,

• Self-learning manufacturing workplaces,

• In-situ mobile learning in the production.

 References

 XLVIII

The deliverable shows the approach the project

FACTS4WORKERS has taken to develop, deploy, in-

tegrate and test the worker centric software solu-

tion. It with the description of the integration plan

on a generic level and points out the necessary steps

in order to transfer the individually developed and

tested services to an integrated functioning system.

Following the agile approach of the project, integra-

tion steps will be performed iteratively improving

the solution step by step and increase its maturity

continuously. This concept also allows to rapidly in-

tegrate feedback from users enabling the worker

centric approach. The second part of the deliverable

provides an overview over the deployment and test-

ing phase. Thereby the different maturity levels

prior to release are summarized. This concept al-

lows to introduce the FACTS4WORKERS solution in

several steps and constantly gather feedback from

the workers. Referring to the feedback, the second

chapter also states the testing activities undertaken

to create a worker-centric solution. The final part

provides an overview over the hardware and soft-

ware architecture of the FACTS4WORKERS solution.

First, the required hardware technology for deploy-

ing the solution on the shop floor is stated before the

software technology, frameworks and programming

languages are outlined. The deliverable finishes with

the description of the tool Docker, which serves as

enabler for the concept of building blocks.

Blueprint architecture and integration plan

